Theory of Microsensors

Microsensors, Since microsensors do not transmit power, the scaling of force is not typically significant. As with conventional-scale sensing, the qualities of interest are high resolution, absence of drift and hysteresis, achieving a sufficient bandwidth, and immunity to extraneous effects not being measured. Microsensors are typically based on either measurement of mechanical strain, measurement of mechanical displacement, or on frequency measurement of a structural resonance.

The former two types are in essence analog measurements, while the latter is in essence a binary-type measurement, since the sensed quantity is typically the frequency of vibration. Since the resonant-type sensors measure frequency instead of amplitude, they are generally less susceptible to noise and thus typically provide a higher resolution measurement.

According to Guckel., resonant sensors provide as much as one hundred times the resolution of analog sensors. They are also, however, more complex and are typically more difficult to fabricate. The primary form of strain-based measurement is piezoresistive, while the primary means of displacement measurement is capacitive. The resonant sensors require both a means of structural excitation as well as a means of resonant frequency detection. Many combinations of transduction are utilized for these purposes, including electrostatic excitation, capacitive detection, magnetic excitation and detection, thermal excitation, and optical detection.

Many microsensors are based upon strain measurement. The primary means of measuring strain is via piezoresistive strain gages, which is an analog form of measurement. Piezoresistive strain gages, also known as semiconductor gages, change resistance in response to a mechanical strain. Note that piezoelectric materials can also be utilized to measure strain. Recall that mechanical strain will induce an electrical charge in a piezoelectric ceramic. The primary problem with using a piezoelectric material, however, is that since measurement circuitry has limited impedance, the charge generated from a mechanical strain will gradually leak through the measurement impedance.

A piezoelectric material therefore cannot provide reliable steady-state signal measurement. In constrast, the change in resistance of a piezoresistive material is stable and easily measurable for steady-state signals. One problem with piezoresistive materials, however, is that they exhibit a strong strain-temperature dependence, and so must typically be thermally compensated.

An interesting variation on the silicon piezoresistor is the resonant strain gage proposed by Ikeda, which provides a frequency-based form of measurement that is less susceptible to noise. The resonant strain gage is a beam that is suspended slightly above the strain member and attached to it at both ends. The strain gage beam is magnetically excited with pulses, and the frequency of vibration is detected by magnetic detection circuit. As the beam is stretched by mechanical strain, the frequency of vibration increases. These sensors provide higher resolution than typical piezoresistors and have a lower temperature coefficient. The resonant sensors, however, require a complex three-dimensional fabrication technique, unlike the typical piezoresistors which require only planar techniques.

One of the most commercially successful microsensor technologies is the pressure sensor. Silicon micromachined pressure sensors are available that measure pressure ranges from around one to several thousand kPa, with resolutions as fine as one part in ten thousand. These sensors incorporate a silicon micromachined diaphragm that is subjected to fluid (i.e., liquid or gas) pressure, which causes dilation of the diaphragm. The simplest of these utilize piezoresistors mounted on the back of the diaphragm to measure deformation, which is a function of the pressure. Examples of these devices are those by Fujii and Mallon.

Post Author: admin

Leave a Reply

Your email address will not be published. Required fields are marked *